

Electricity Technology in a Carbon-Constrained Future

Utah Climate Change Symposium May 8, 2007

Bryan Hannegan, Ph.D. Vice President - Environment

Presentation Objective

Provide a factual framework for discussing:

- Generation technologies and investment decisions in a world with carbon constraints
- II. R&D needs to achieve a low-cost, low-carbon portfolio of electricity technologies
- III. Technical feasibility of using this portfolio of technologies to reduce U.S. electric sector CO₂ emissions
- IV. Economic implications of achieving significant CO₂ reductions with/without low-cost, low-carbon technologies

Pulverized Coal

Natural Gas Combined Cycle

Cost of CO₂, \$/metric ton

Comparative Costs in 2010-2015

\$100/kW capital cost → \$1.7 MWh LCOE

Levelized Cost of Electricity, \$/MWh

Recent Cost Escalation

Construction Cost Indices

(Source: Chemical Engineering Magazine, March 2007)

Currently revising our work based on available cost data

Near-Term Implications

- New advanced light water reactors have cost advantage, but unlikely to enter operation until after 2015
- Renewables unlikely to extend beyond mandated requirement due to poor comparative economics
 - Exception is good wind with tax incentives (but limited in scale)
- As a result, most new base-load generation will utilize fossil technologies <u>without CO₂ capture and storage</u>
 - PC vs. IGCC economics a function of coal type, other factors
 - Gas vs. coal choice depends on future gas prices, capital costs

Very limited opportunity for significant economic CO₂ reduction!!!

Presentation Objective

Provide a factual framework for discussing:

- Generation technologies and investment decisions in a world with carbon constraints
- II. R&D needs to achieve a low-cost, low-carbon portfolio of electricity technologies
- III. Technical feasibility of using this portfolio of technologies to reduce U.S. electric sector CO₂ emissions
- IV. Economic implications of achieving significant CO₂ reductions with/without low-cost, low-carbon technologies

Key Technology Challenges

Significant cost-effective CO₂ reductions from the U.S. electric sector will require <u>ALL</u> of the following technology advances:

- 1. Smart grids and communications infrastructures to enable end-use efficiency and demand response, distributed generation, and PHEVs.
- 2. A grid infrastructure with the capacity and reliability to operate with 20-30% intermittent renewables in specific regions.
- 3. Significant expansion of nuclear energy enabled by continued safe and economic operation of existing nuclear fleet; and a viable strategy for managing spent fuel.
- 4. Commercial-scale coal-based generation units operating with 90+% CO₂ capture and storage in a variety of geologies.

Average Annual Funding R&D Gap

million \$/yr

	2007- 2011	2012- 2016	2017- 2021	2022- 2026	2027- 2031	Avg
ENABLE ENERGY EFFICIENCY & DER Smart grids and communications infrastructures to enable end-use efficiency and demand response, DER (i.e. Solar PV) and PHEVs. Improve equipment efficiency.	\$310	\$290	\$240	\$140	\$120	\$220
GRID INTEGRATION WITH RENEWABLES A grid infrastructure with the capacity and reliability to operate with 20-30% intermittent renewable generation in specific regions.	\$400	\$370	\$330	\$300	\$300	\$340
NUCLEAR Significant expansion of nuclear energy enabled by continued operation of the existing nuclear fleet and a viable strategy for managing spent fuel. Includes new RD&D for ALWR deployment support.	\$170	\$170	\$170	\$100	\$100	\$140
ADVANCED COAL, CO ₂ CAPTURE and STORAGE Commercial-scale coal-based generation units operating with ~90% CO2 capture and storage in a variety of geologies.	\$480	\$800	\$800	\$620	\$400	\$620
Total	\$1360	\$1630	\$1540	\$1160	\$920	\$1320

V3;4-19-07 HC

Example: Dynamic Energy Management

Timeline: Advanced Coal with CCS

*These are target efficiencies for plants including CO2 capture

Comparative Costs in 2020-2025

Levelized Cost of Electricity, \$/MWh

Presentation Objective

Provide a factual framework for discussing:

- Generation technologies and investment decisions in a world with carbon constraints
- II. R&D needs to achieve a low-cost, low-carbon portfolio of electricity technologies
- III. Technical feasibility of using this portfolio of technologies to reduce U.S. electric sector CO₂ emissions
- IV. Economic implications of achieving significant CO₂ reductions with/without low-cost, low-carbon technologies

U.S. Electricity Sector CO₂ Emissions

Technology Deployment Targets

Technology	EIA 2007 Base Case	EPRI Analysis Target*			
Efficiency	Load Growth ~ +1.5%/yr	Load Growth ~ +1.1%/yr			
Renewables	30 GWe by 2030	70 GWe by 2030			
Nuclear Generation	12.5 GWe by 2030	64 GWe by 2030			
	No Existing Plant Upgrades	150 GWe Plant Upgrades			
Advanced Coal Generation	40% New Plant Efficiency by 2020–2030	46% New Plant Efficiency by 2020; 49% in 2030			
Carbon Capture and Storage (CCS)	None	Widely Available and Deployed After 2020			
Plug-in Hybrid Electric Vehicles (PHEV)	None	10% of New Vehicle Sales by 2017; +2%/yr Thereafter			
Distributed Energy Resources (DER) (including distributed solar)	< 0.1% of Base Load in 2030	5% of Base Load in 2030			

EPRI analysis targets do not reflect economic considerations, or potential regulatory and siting constraints.

Benefit of Achieving Efficiency Target

Benefit of Achieving Renewables Target

Benefit of Achieving Nuclear Generation Target

Benefit of Achieving Advanced Coal Target

Benefit of Achieving CCS Target

Benefit of Achieving PHEV and DER Targets

CO₂ Reductions ... Technical Potential*

U.S. Electricity Generation: 2030

^{*} Base case from EIA "Annual Energy Outlook 2007"

Presentation Objective

Provide a factual framework for discussing:

- Generation technologies and investment decisions in a world with carbon constraints
- II. R&D needs to achieve a low-cost, low-carbon portfolio of electricity technologies
- III. Technical feasibility of using this portfolio of technologies to reduce U.S. electric sector CO₂ emissions
- IV. Economic implications of achieving significant CO₂ reductions with/without low-cost, low-carbon technologies

Preliminary Economic Results in Brief

Absent advanced electricity technologies, CO₂ constraints result in

- Price-induced conservation and "demand destruction"
- Fuel switching to natural gas
- Higher electricity prices
- High cost to U.S. economy

With advanced electricity technologies, CO₂ constraints result in

- Growth in electrification
- Continued use of coal (w/CCS) and nuclear
- Lower, more stable electricity prices
- 50-66% lower cost to U.S. economy

Results insensitive to CO₂ constraints and capital cost assumptions

